Abstract

Identifying planets around O-type and B-type stars is inherently difficult; the most massive known planet host has a mass of only about 3 M⊙ . However, planetary systems which survive the transformation of their host stars into white dwarfs can be detected via photospheric trace metals, circumstellar dusty and gaseous discs, and transits of planetary debris crossing our line of sight.   These signatures offer the potential to explore planet formation efficiency and chemical composition for host stars with masses up to the core-collapse boundary at ≈ 8 M⊙ , a mass regime rarely investigated in planet formation theory. Here, we establish limits on where both major and minor planets must reside around ≈ 6–8 M⊙ stars in order to survive into the white dwarf phase. For this mass range, we find that intact terrestrial or giant planets need to leave the main sequence beyond approximate minimum star–planet separations of, respectively, about 3 and 6 au, as shown here: Further, in these systems, rubble pile minor planets of radii 10, 1.0, and 0.1 km would have been shorn apart by giant branch radiative YORP spin-up if they formed and remained within, respectively, tens, hundreds, and thousands of au, as shown here: Overall, we find that planet formation around 6 M⊙-8 M⊙ stars may be feasible, and hence we encourage dedicated planet formation investigations for these systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.