Abstract

Abstract Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occurs in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.