Abstract

Velocity and density jumps across the 410-km seismic discontinuity generally indicate olivine contents of ∼30 to 50 vol.% on the basis of the elastic properties of anhydrous olivine and wadsleyite, which is considerably less than the ∼60% olivine in the widely accepted pyrolite model for the upper mantle. A possible explanation for this discrepancy is that water dissolved in olivine and wadsleyite affects their elastic properties in ways that can reconcile the pyrolitic model with seismic observations. In order to more fully constrain the olivine content of the upper mantle near the 410-km discontinuity, and to place constraints on the mantle water content at this depth, we determined the full elasticity of hydrous wadsleyite at the P-T conditions of the discontinuity based on density functional theory calculations. Together with previous determinations for the effect of water on olivine elasticity, we simultaneously modeled the density and seismic velocity jumps (Δρ, ΔVP, ΔVS) across the olivine-wadsleyite transition. Our models allow for several scenarios that can well reproduce the density and seismic velocity jumps across the 410-km discontinuity when compared to globally averaged seismic models. When the water content of olivine and wadsleyite is assumed to be equal as in a simple binary system, our modeling indicates a best fit for low water contents (<0.1 wt.%) with an olivine proportion of ∼50%, suggesting a relatively dry, non-pyrolitic mantle at depths of the 410-km discontinuity. However, our modeling can be reconciled with a pyrolitic mantle if the water content in wadsleyite is ∼0.9 wt.% and that in olivine is at its storage capacity of ∼500-1500 ppm. The result would be consistent with a hydrous melt phase produced at depths just above the phase transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call