Abstract

We derive the best possible bounds that can be placed on Yukawa- and chameleon-like modifications to the Newtonian gravitational potential with a cavity optomechanical quantum sensor. By modelling the effects on an oscillating source-sphere on the optomechanical system from first-principles, we derive the fundamental sensitivity with which these modifications can be detected in the absence of environmental noise. In particular, we take into account the large size of the optomechanical probe compared with the range of the fifth forces that we wish to probe and quantify the resulting screening effect when both the source and probe are spherical. Our results show that optomechanical systems in high vacuum could, in principle, further constrain the parameters of chameleon-like modifications to Newtonian gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.