Abstract

AbstractA Lagrangian model is constructed for a surface column of initial height h(0) that propagates at an average speed u and is subject to excess (i.e., net) evaporation of q m/year. It is shown that these parameters combine to form an evaporation length, L = uh(0)/q, which provides an estimate for the distance the column must travel before evaporating completely. While these changes in the surface water level due to evaporation are compensated by entrainment of water into the overall column, the changes in either near‐surface salinity or isotopic compositions are retained and can be measured. Observations of surface salinity and isotopic compositions of δ18O and δD along 1,000‐ to 3,500‐km long transects are used to estimate values of L in the Red Sea, Mediterranean Sea, Indian Ocean, and Gulf Stream. The variations of salinity, δ18O and δD in all four basins are linear. As anticipated, the estimated value of L is smallest in the slowly moving and arid Red Sea and is greatest in the fast‐moving Gulf Stream.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.