Abstract

Reliability and quality control of microelectronics depend on a detailed understanding of the complex thermomechanical properties of miniaturized lead-free solder joints. With the continuous reduction in size of modern electronic devices, including also the size of the solder joints themselves, mechanical constraint effects may become of importance for the reliability of the joints. In the present study stress relaxation tests in tensile mode were performed on model solder joints consisting of eutectic Sn-3.5Ag solder between Cu substrates. The gap size of the joints was varied between 750 μm and 150 μm in order to investigate the variation of the mechanical properties as a function of the gap size. As it turned out, stress relaxation was dramatically reduced when the solder gaps became smaller due to constraint effects already well known from earlier measurements of the tensile strength. By employing a traditional creep model, the stress exponents and the activation energies were derived and compared with available data in the literature. The consequences of these constraint effects for the case of thermomechanical fatigue are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.