Abstract
We constrain the depth and seismic structure of stiff sediment cover overlying a prospective basement terrane using a passive seismic technique which uses surface wave energy from microtremor (also known as ambient seismic energy or seismic noise). This may be applied to mineral exploration under cover to decrease the inherent ambiguity in modeling potential field data for exploration targeting. We use data from arrays of portable broadband seismometers, processed using both the multimode spatially averaged coherency (MMSPAC) method and the horizontal to vertical spectral ratio (HVSR) method, to produce profiles of seismic velocity structure along a 12-km transect. We have developed field protocols to ensure consistent acquisition of high-quality data in near-mine and remote locations and a variety of ground conditions. A wavefield approaching the theoretical ideal for MMSPAC processing is created by combining the energy content of an off-road vehicle, driven around the seismometer array, and ambient sources. We found that this combination results in significantly higher-quality MMSPAC waveforms in comparison with that obtained using ambient energy alone. Under ideal conditions, a theoretical maximum depth of investigation of 600 m can be achieved with a hexagonal sensor array with 50-m radius and MMSPAC and HVSR. The modeling procedure we employ is sensitive to layer thicknesses of [Formula: see text]. A high-velocity layer in the sediment package reduces the sensitivity to deeper structure. This can limit the modeling of underlying layers but may be addressed by detailed analysis of the HVSR peaks. Microtremor recordings including off-road vehicle noise, combined with the MMSPAC and HVSR processing techniques, may therefore be used to constrain sediment structure and depth to basement in a cost-effective and efficient method that could contribute greatly to future mineral exploration under cover.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.