Abstract

Detecting the dark matter annihilation signal from Galactic substructure, or subhalos, is an important challenge for high-energy gamma-ray experiments. In this paper we discuss detection prospects by combining two different aspects of the gamma-ray signal: the angular distribution and the photon counts probability distribution function (PDF). The true PDF from subhalos has been shown recently (by Lee et al.) to deviate from Poisson; we extend this analysis and derive the signal PDF from a detailed Lambda-CDM-based model for the properties of subhalos. We combine our PDF with a model for Galactic and extra-Galactic diffuse gamma-ray emission to obtain an estimator and projected error on dark matter particle properties (mass and annihilation cross section) using the Fermi Gamma-Ray Space Telescope. We compare the estimator obtained from the true PDF to that obtained from the simpler Poisson analysis. We find that, although both estimators are unbaised in the presence of backgrounds, the error on dark matter properties derived from the true PDF is ~50% smaller than when utilizing the Poisson-based analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.