Abstract

The Sloan Digital Sky Survey (SDSS) has successfully compiled data on more than 300,000 quasars. It, therefore, provides the best sample of multiple-image, gravitationally-lensed quasistellar objects (QSOs) with a well-defined selection effect. We use a SDSS Quasar Lens Search (SQLS) sample of lensed quasars to investigate the constraints on the matter density Ω m and the cosmological constant ΩΛ. In order to be free from magnification bias, we use only image separation statistics, which requires detailed knowledge of the source’s luminosity function at all redshifts. The maximum-likelihood analysis shows that cosmological models with non-zero cosmological constant are more likely, but the statistical significance is not large enough. Monte-Carlo simulation show that 100 or more lensed QSOs can provide constraints comparable to other major cosmological constraints. It also shows that unless the number of lensed QSOs is an order-of-magnitude larger, the lensing statistics test has a degeneracy in the ΩΛ−Ω m parameter space in the direction roughly perpendicular to ΩΛ + Ω m = 1 and that the lensing statistics test alone cannot determine ΩΛ and Ω m simultaneously. We also derive constraints on the equation-of-state parameter for dark energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.