Abstract

We propose to use a simple observable, the fractional area of "hot spots" in weak gravitational lensing mass maps which are detected with high significance, to determine background cosmological parameters. Because these high-convergence regions are directly related to the physical nonlinear structures of the universe, they derive cosmological information mainly from the nonlinear regime of density fluctuations. We show that in combination with future cosmic microwave background anisotropy measurements, this method can place constraints on cosmological parameters that are comparable to those from the redshift distribution of galaxy cluster abundances. The main advantage of the statistic proposed in this paper is that projection effects, normally the main source of uncertainty when determining the presence and the mass of a galaxy cluster, here serve as a source of information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.