Abstract

We study the inflationary era of the Universe in a modified cosmological scenario based on the gravity-thermodynamics conjecture with Barrow entropy instead of the usual Bekenstein–Hawking one. The former arises from the effort to account for quantum gravitational effects on the horizon surface of black holes and, in a broader sense, of the Universe. First, we extract modified Friedmann equations from the first law of thermodynamics applied to the apparent horizon of a Friedmann–Robertson–Walker Universe. Assuming a power-law behavior for the scalar inflaton field, we then investigate how the inflationary dynamics is affected in Barrow cosmological setup. We find that the inflationary era may phenomenologically consist of the slow-roll phase, while Barrow entropy is incompatible with kinetic inflation. By demanding observational consistency of the scalar spectral index and tensor-to-scalar ratio with recent Planck data, we finally constrain Barrow exponent to Delta lesssim mathcal {O}(10^{-4}), which is the most stringent bound in so-far literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call