Abstract

Direct imaging spectroscopy with future space-based telescopes will constrain terrestrial planet atmospheric composition and potentially detect biosignature gases. One promising indication of life is abundant atmospheric O2. However, various non-biological processes could also lead to O2 accumulation in the atmospheres of potentially habitable planets around Sun-like stars. In particular, the absence of non-condensible background gases such as N2 could result in appreciable H escape and abiotic O2 buildup, so identifying background atmosphere composition is crucial for contextualizing any O2 detections. Here, we perform retrievals on simulated directly imaged terrestrial planets using rfast, a new exoplanet atmospheric retrieval suite with direct imaging analysis capabilities. By simulating Earth-analog retrievals for varied atmospheric compositions, cloud properties, and surface pressures, we determine what wavelength range, spectral resolution, and signal-to-noise ratio (S/N) are necessary to constrain background gases’ identity and abundance. We find N2 backgrounds can be uniquely identified with S/N ∼ 20 observations, provided that wavelength coverage extends beyond ∼1.6 μm to rule out CO-dominated atmospheres. Additionally, there is a low probability of O2-dominated atmospheres due to an O2–N2 degeneracy that is only totally ruled out at S/N ∼ 40. If wavelength coverage is limited to 0.2–1.1 μm, then although all other cosmochemically plausible backgrounds can be readily excluded, N2 and CO backgrounds cannot be distinguished. Overall, our simulated retrievals and associated integration time calculations suggest that near-infrared coverage to at least 1.6 μm and apertures approaching 8 m are needed to confidently rule out O2 biosignature false positives within feasible integration times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call