Abstract

AbstractGetz Ice Shelf, the largest producer of ice shelf meltwater in Antarctica, buttresses glaciers that hold enough ice to raise sea level by 22 cm. We present a new bathymetry of its sub‐ice shelf cavity using a three‐dimensional inversion of airborne gravity data constrained by multibeam bathymetry at sea and a reconstruction of the bedrock from mass conservation on land. The new bathymetry is deeper than previously estimated with differences exceeding 500 m in a number of regions. When incorporated into an ocean model, it yields a better description of the spatial distribution of ice shelf melt, specifically along glacier grounding lines. While the melt intensity is overestimated because of a positive bias in ocean thermal forcing, the study reveals the main pathways along which warm oceanic water enters the cavity and corroborates the observed rapid retreat of Berry Glacier along a deep channel with a retrograde bed slope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call