Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> Despite the celebrated success of dynamic programming for optimizing quadratic cost functions over linear systems, such an approach is limited by its inability to tractably deal with even simple constraints. In this paper, we present an alternative approach based on results from robust optimization to solve the stochastic linear-quadratic control (SLQC) problem. In the unconstrained case, the problem may be formulated as a semidefinite optimization problem (SDP). We show that we can reduce this SDP to optimization of a convex function over a scalar variable followed by matrix multiplication in the current state, thus yielding an approach that is amenable to closed-loop control and analogous to the Riccati equation in our framework. We also consider a tight, second-order cone (SOCP) approximation to the SDP that can be solved much more efficiently when the problem has additional constraints. Both the SDP and SOCP are tractable in the presence of control and state space constraints; moreover, compared to the Riccati approach, they provide much greater control over the stochastic behavior of the cost function when the noise in the system is distributed normally. </para>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.