Abstract

Stochastic Gradient Descent (SGD) is the method of choice for large scale problems, most notably in deep learning. Recent studies target improving convergence and speed of the SGD algorithm. In this paper, we equip the SGD algorithm and its advanced versions with an intriguing feature, namely handling constrained problems. Constraints such as orthogonality are pervasive in learning theory. Nevertheless and to some extent surprising, constrained SGD algorithms are rarely studied. Our proposal makes use of Riemannian geometry and accelerated optimization techniques to deliver efficient and constrained-aware SGD methods.We will assess and contrast our proposed approaches in a wide range of problems including incremental dimensionality reduction, karcher mean and deep metric learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.