Abstract

This article considers the problem of constrained stabilization of periodically time-varying discrete-time systems, or shortly, periodic systems. A modification of a recent result on periodic Lyapunov functions, which are required to decrease at every period rather than at every time instant, is exploited to obtain a new stabilizing controller synthesis method for periodic systems. We demonstrate that for the relevant class of linear periodic systems subject to polytopic state and input constraints, the developed synthesis method is advantageous compared to the standard Lyapunov synthesis method. An illustrative example demonstrates the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.