Abstract

We present a methodology for constructing modified gravity (MG) constrained simulations of the local Universe using positions and peculiar velocities from the CosmicFlows data set. Our analysis focuses on the following MG models: the normal branch of the Dvali-Gabadadze-Porrati (nDGP) model and Hu-Sawicki $f(R)$ model. We develop a model independent methodology for constructing constrained simulations with any given power spectra and numerically calculated linear growth functions. Initial conditions (ICs) for a set of constrained simulations are constructed for the standard cosmological model $\Lambda$CDM and the MG models. Differences between the model's reconstructed Wiener filtered density and the resultant simulation density are presented showing the importance for the generation of MG constrained ICs to study the subtle effects of MG in the local Universe. These are the first MG constrained simulations ever produced. The current work paves the way to improved approximate methods for models with scale-dependent growth functions, such as $f(R)$, and for high-resolution hydrodynamical MG zoom-in simulations of the local Universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.