Abstract

Constrained simulations of the Local Universe are an invaluable tool to investigate in detail the nature of dark matter particles. Thanks to them, we can simulate the formation of dark halos in environments pretty much like the one our Milky Way happened to live. A direct comparison with observations of our Local Universe can be made in this way, minimizing the effects of cosmic variance in the simulations. In this paper we present the results of a comparison of high‐resolution simulated Local Group (LG) objects done in 3 different dark matter scenarios: The standard Cold Dark Matter and two Warm Dark Matter models with particles masses ranging from 3 to 1 keV, that are still compatible with high‐redshift observations. We focus here on the study of substructures and mass profiles for the CDM and WDM LG objects and draw some conclusions about the limits on the mass of warm dark matter particles to be compatible with the most recently discovered Milky Way ultra‐faint satellites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call