Abstract
In the control field, the adaptive model predictive control (AMPC) has the capability of taking effective control actions on unknown-but-bounded time-independent or slowly time-varying systems coupling with constraints. In essence, AMPC estimates the uncertain parameters or uncertainty set online by utilising historian data to extract model information. The model estimation procedure imposes some specific conditions on data and these extra conditions have restricted its practical use. To overcome these problems, a new data-driven control methodology is presented that integrates the data-driven concept into robust model predictive control (RMPC) architecture for unknown-but-bounded time-independent or slowly time-varying plant. The key novelty is to employ historian data to derive control policy and make a prediction in replacement with the complicated procedure of utilising data to estimate model parameters. A data-driven RMPC algorithm is developed within the robust model predictive control framework with the fulfilment of recursive feasibility and stability. The authors display the highlights of the data-driven model predictive control controller through two simulation examples. The resulting controller is verified to reduce conservativeness and increase the closed-loop performance of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.