Abstract

Relative least general generalization proposed by Plotkin, is widely used for generalizing first-order clauses in Inductive Logic Programming, and this paper describes an extension of Plotkin’s work to allow various computation domains: Herbrand Universe, sets, numerical data, ect. The ϕ-subsumption in Plotkin’s framework is replaced by a more general constraint-based subsumption. Since this replacement is analogous to that of unification by constraint solving in Constraint Logic Programming, the resultant method can be viewed as a Constraint Logic Programming version of relative least general generalization. Constraint-based subsumption, however, leads to a search on an intractably large hypothesis space. We therefore providemeta-level constraints that are used as semantic bias on the hypothesis language. The constraintsfunctional dependency andmonotonicity are introduced by analyzing clausal relationships. Finally, the advantage of the proposed method is demonstrated through a simple layout problem, where geometric constraints used in space planning tasks are produced automatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call