Abstract

This paper proposes a quaternion-valued one-layer recurrent neural network approach to resolve constrained convex function optimization problems with quaternion variables. Leveraging the novel generalized Hamilton-real (GHR) calculus, the quaternion gradient-based optimization techniques are proposed to derive the optimization algorithms in the quaternion field directly rather than the methods of decomposing the optimization problems into the complex domain or the real domain. Via chain rules and Lyapunov theorem, the rigorous analysis shows that the deliberately designed quaternion-valued one-layer recurrent neural network stabilizes the system dynamics while the states reach the feasible region in finite time and converges to the optimal solution of the considered constrained convex optimization problems finally. Numerical simulations verify the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.