Abstract

Realizing the potential of near-term quantum computers to solve industry-relevant constrained-optimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrained-optimization problem and demonstrate the largest-to-date execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this trade-off makes choosing good parameters difficult in general. We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.