Abstract
This paper is concerned with the identification and nonlinear predictive control approach for a nonlinear process based on a third-order reduced complexity, discrete-time Volterra model called the third-order S-PARAFAC Volterra model. The proposed model is given using the PARAFAC tensor decomposition that provides a parametric reduction compared with the conventional Volterra model. In addition, the symmetry property of the Volterra kernels allows us to further reduce the complexity of the model. These properties allow synthesizing a nonlinear model-based predictive control (NMBPC). Then we construct the general form of a new predictor and we propose an optimization algorithm formulated as a quadratic programming (QP) algorithm under linear and nonlinear constraints. The performance of the proposed third-order S-PARAFAC Volterra model and the developed NMBPC algorithm are illustrated on a numerical simulation and validated on a benchmark such as a continuous stirred-tank reactor system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.