Abstract

High system capacities can be achieved by controlling the transmitter power in multiuser radio systems. Power control with no constraint on the maximum power level has been studied extensively in earlier work. Transmitter power is at a premium in radio systems such as cellular systems and PCS. There is a limit on the maximum transmitter power especially at the terminals (e.g. mobile units and handsets) since the power comes from a battery. In this paper we study power control that maximizes the minimum carrier to interference ratio (CIR), with a constraint on the maximum power. The optimal power vector solution lies on the boundary of the constrained power vector set and achieves a balance in the CIR's. Results indicate that the constraints do not induce any stability problems. A distributed scheme with favourable convergence properties and close to optimum performance is presented. Simulation results show that the algorithm tries to maximize the number of terminals served with CIR greater than or equal to the target CIR, while conserving power.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.