Abstract
We prove absence of infinite clusters and contours in a class of critical constrained percolation models on the square lattice. The percolation configuration is assumed to satisfy certain hard local constraints, but only weak symmetry and ergodicity conditions are imposed on its law. The proofs use new combinatorial techniques exploiting planar duality. Applications include absence of infinite clusters of diagonal edges for critical dimer models on the square-octagon lattice, as well as absence of infinite contours and infinite clusters for critical XOR Ising models on the square grid. We also prove that there exists at most one infinite contour for high-temperature XOR Ising models, and no infinite contour for low-temperature XOR Ising model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l’Institut Henri Poincaré D, Combinatorics, Physics and their Interactions
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.