Abstract
AbstractThe penalized spline is a popular method for function estimation when the assumption of “smoothness” is valid. In this paper, methods for estimation and inference are proposed using penalized splines under additional constraints of shape, such as monotonicity or convexity. The constrained penalized spline estimator is shown to have the same convergence rates as the corresponding unconstrained penalized spline, although in practice the squared error loss is typically smaller for the constrained versions. The penalty parameter may be chosen with generalized cross‐validation, which also provides a method for determining if the shape restrictions hold. The method is not a formal hypothesis test, but is shown to have nice large‐sample properties, and simulations show that it compares well with existing tests for monotonicity. Extensions to the partial linear model, the generalized regression model, and the varying coefficient model are given, and examples demonstrate the utility of the methods.The Canadian Journal of Statistics40: 190–206; 2012 © 2012 Statistical Society of Canada
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.