Abstract

Turbulent flow has a significantly higher drag than the corresponding laminar flow at the same flow conditions, and therefore incurs a significant penalty of increased fuel consumption due to the extra thrust required. One possible way of decreasing the drag is to apply surface suction to delay the transition from laminar to turbulent flow. In this paper an aerofoil with 3 non-overlapping panels covering up to 20% of chord for boundary layer transition control is considered. The problem is complicated by the fact that panels can change both their positions and lengths. The complexity of the optimization problem is such that it is not practical to perform the investigation using a single processor. A constrained global parallel algorithm based on a combination of deformed configuration methods and controlled random search method is developed. It is shown that for the problem considered, good solutions can be found efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.