Abstract

We consider a dynamical system approach to solve finite-dimensional smooth optimization problems with a compact and connected feasible set. In fact, by the well-known technique of equalizing inequality constraints using quadratic slack variables, we transform a general optimization problem into an associated problem without inequality constraints in a higher-dimensional space. We compute the projected gradient for the latter problem and consider its projection on the feasible set in the original, lower-dimensional space. In this way, we obtain an ordinary differential equation in the original variables, which is specially adapted to treat inequality constraints (for the idea, see Jongen and Stein, Frontiers in Global Optimization, pp. 223---236, Kluwer Academic, Dordrecht, 2003). The article shows that the derived ordinary differential equation possesses the basic properties which make it appropriate to solve the underlying optimization problem: the longtime behavior of its trajectories becomes stationary, all singularities are critical points, and the stable singularities are exactly the local minima. Finally, we sketch two numerical methods based on our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.