Abstract

Approximate dynamic programming formulation (ADP) implemented with an Adaptive Critic (AC) based neural network (NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman (HJB) equations. As interest in the ADP and the AC solutions are escalating, there is a dire need to consider enabling factors for their possible implementations. A typical AC structure consists of two interacting NNs which is computationally expensive. In this paper, a new architecture, called the "Cost Function Based Single Network Adaptive Critic (J-SNAC)" is presented that eliminates one of the networks in a typical AC structure. This approach is applicable to a wide class of nonlinear systems in engineering. Many real-life problems have controller limits. In this paper, a non-quadratic cost function is used that incorporates the control constraints. Necessary equations for optimal control are derived and an algorithm to solve the constrained-control problem with J-SNAC is developed. A benchmark nonlinear system is used to illustrate the working of the proposed technique. Extensions to optimal control constrained problems in the presence of uncertainties are also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.