Abstract
In general, discretization in the motion vector domain yields an intractable number of labels. In this paper, we propose an approach that can reduce general optical flow to the constrained matching problem by pre-estimating a 2-D disparity labeling map of the desired discrete motion vector function. One of the goals of the proposed paper is estimating coarse distribution of motion vectors and then utilizing this distribution as global constraints for discrete optical flow estimation. This pre-estimation is done with a simple frame-to-frame correlation technique also known as the digital symmetric-phase-only-filter (SPOF). We discover a strong correlation between the output of the SPOF and the motion vector distribution of the related optical flow. A two step matching paradigm for optical flow estimation is applied: pixel accuracy (integer flow) and subpixel accuracy estimation. The matching problem is solved by global optimization. Experiments on the Middlebury optical flow datasets confirm our intuitive assumptions about strong correlation between motion vector distribution of optical flow and maximal peaks of SPOF outputs. The overall performance of the proposed method is promising and achieves state-of-the-art results on the Middlebury benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.