Abstract

In this paper we propose two novel approaches for solving constrained multi-objective optimization problems using steady state GAs. These methods are intended for solving real-world application problems that have many constraints and very small feasible regions. One method called Objective Exchange Genetic Algorithm for Design Optimization (OEGADO) runs several GAs concurrently with each GA optimizing one objective and exchanging information about its objective with the others. The other method called Objective Switching Genetic Algorithm for Design Optimization (OSGADO) runs each objective sequentially with a common population for all objectives. Empirical results in benchmark and engineering design domains are presented. A comparison between our methods and Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) shows that our methods performed better than NSGA-II for difficult problems and found Pareto-optimal solutions in fewer objective evaluations. The results suggest that our methods are better applicable for solving real-world application problems wherein the objective computation time is large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.