Abstract

We propose a novel approach to the problem of multi-degree reduction of Bézier triangular patches with prescribed boundary control points. We observe that the solution can be given in terms of bivariate dual discrete Bernstein polynomials. The algorithm is very efficient thanks to using the recursive properties of these polynomials. The complexity of the method is O ( n 2 m 2 ) , n and m being the degrees of the input and output Bézier surfaces, respectively. If the approximation—with appropriate boundary constraints—is performed for each patch of several smoothly joined triangular Bézier surfaces, the result is a composite surface of global C r continuity with a prescribed order r . Some illustrative examples are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.