Abstract

The control problem was formulated in the previous chapters considering all signals to possess an unlimited range. This is not very realistic because in practice all processes are subject to constraints. Actuators have a limited range of action and a limited slew rate, as is the case of control valves limited by a fully closed and fully open position and a maximum slew rate. Constructive or safety reasons, as well as sensor range, cause bounds in process variables, as in the case of levels in tanks, flows in pipes, and pressures in deposits. Furthermore, in practice, the operating points of plants are determined to satisfy economic goals and lie at the intersection of certain constraints. The control system normally operates close to the limits and constraint violations are likely to occur. The control system, especially for longrange predictive control, has to anticipate constraint violations and correct them in an appropriate way. Although input and output constraints are basically treated in the same way, as is shown in this chapter, the implications of the constraints differ. Output constraints are mainly due to safety reasons and must be controlled in advance because output variables are affected by process dynamics. Input (or manipulated) variables can always be kept in bound by the controller by clipping the control action to a value satisfying amplitude and slew rate constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call