Abstract
AbstractThis article addresses the problem of model predictive control of networked jump systems in the presence of DoS attacks and time delays. In the structural framework of the network predictive control system, we mathematically model the networked jump system by using Markov chains to describe the time delays and a polytope model to describe the jump system phenomenon, considering the properties of DoS attacks and time delays. Based on this, we propose a strategy to lessen the effect of network constraints on the control performance of the system. This strategy involves the corresponding control inputs from the control sequence for real‐time active compensation. It includes adjusting the control sequence application length variation based on the duration of the DoS attacks and time delays at each moment. In addition, we demonstrate the recursive feasibility of the control strategy and the global asymptotic stability of the control system from a theoretical perspective through the Lyapunov stability theory. Finally, the effectiveness of the proposed strategy is verified by simulation arithmetic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.