Abstract
We introduce an abstract framework for the study of general mean field game and mean field control problems. Given a multiagent system, its macroscopic description is provided by a time-depending probability measure, where at every instant of time the measure of a set represents the fraction of (microscopic) agents contained in it. The trajectories available to each of the microscopic agents are affected also by the overall state of the system. By using a suitable concept of random lift of set-valued maps, together with fixed point arguments, we are able to derive properties of the macroscopic description of the system from properties of the set-valued map expressing the admissible trajectories for the microscopical agents. We apply the results in the case in which the admissible trajectories of the agents are the minimizers of a suitable integral functional depending also from the macroscopic evolution of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.