Abstract

Constrained Markov decision processes with compact state and action spaces are studied under long-run average reward or cost criteria. By introducing a corresponding Lagrange function, a saddle-point theorem is given, by which the existence of a constrained optimal pair of initial state distribution and policy is shown. Also, under the hypothesis of Doeblin, the functional characterization of a constrained optimal policy is obtained

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.