Abstract

SUMMARYIn this paper, we study constrained Markov control processes on Borel spaces with possibly unbounded one‐stage cost, under a discounted optimality criterion with random discount factor and restrictions of the same kind. We prove that the corresponding optimal control problem is equivalent to an infinite‐dimensional linear programming problem. In addition, considering the dual program, we show that there is no duality gap, and moreover, the strong duality condition holds. Hence, both programs are solvable, and their optimal values coincide. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.