Abstract

AbstractIn the minimum-weight many-to-many point matching problem, we are given a set R of red points and a set B of blue points in the plane, of total size N, and we want to pair up each point in R to one or more points in B and vice versa so that the sum of distances between the paired points is minimized. This problem can be solved in $$O(N^3)$$ O ( N 3 ) time by using a reduction to the minimum-weight perfect matching problem, and thus, it is not fast enough to be used for on-line systems where a large number of tunes need to be compared. Motivated by similarity problems in music theory, in this paper we study several constrained minimum-weight many-to-many point matching problems in which the allowed pairings are given by geometric restrictions, i.e., a bichromatic pair can be matched if and only if the corresponding points satisfy a specific condition of closeness. We provide algorithms to solve these constrained versions in O(N) time when the sets R and B are given ordered by abscissa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call