Abstract
The problem of finding a best Lp-approximation (1 ≤ p < ∞) to a function in Lp from a special subcone of generalized n-convex functions induced by an ECT-system is considered. Tchebycheff splines with a countably infinite number of knots are introduced and best approximations are characterized in terms of local best approximations by these splines. Various properties of best approximations and their uniqueness in L1 are investigated. Some special results for generalized monotone and convex cases are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.