Abstract

This article considers moving horizon strategies for constrained linear state estimation. Additional information for estimating state variables from output measurements is often available in the form of inequality constraints on states, noise, and other variables. Formulating a linear state estimation problem with inequality constraints, however, prevents recursive solutions such as Kalman filtering, and, consequently, the estimation problem grows with time as more measurements become available. To bound the problem size, we explore moving horizon strategies for constrained linear state estimation. In this work we discuss some practical and theoretical properties of moving horizon estimation. We derive sufficient conditions for the stability of moving horizon state estimation with linear models subject to constraints on the estimate. We also discuss smoothing strategies for moving horizon estimation. Our framework is solely deterministic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.