Abstract
Directed acyclic graphs are widely used to describe directional pairwise relations. Such relations are estimated by reconstructing a directed acyclic graph's structure, which is challenging when the ordering of nodes of the graph is unknown. In such a situation, existing methods such as the neighbourhood and search-and-score methods have high estimation errors or computational complexities, especially when a local or sequential approach is used to enumerate edge directions by testing or optimizing a criterion locally, as a local method may break down even for moderately sized graphs. We propose a novel approach to simultaneously identifying all estimable directed edges and model parameters, using constrained maximum likelihood with nonconvex constraints. We develop a constraint reduction method that constructs a set of active constraints from super-exponentially many constraints. This, coupled with an alternating direction method of multipliers and a difference convex method, permits efficient computation for large-graph learning. We show that the proposed method consistently reconstructs identifiable directions of the true graph and achieves the optimal performance in terms of parameter estimation. Numerically, the method compares favourably with competitors. A protein network is analysed to demonstrate that the proposed method can make a difference in identifying the network's structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.