Abstract

Finding global minima and maxima of constrained optimization problems is an important task in engineering applications and scientific computation. In this paper, the necessary conditions of optimality will be solved sequentially using a combination of gradient descent and exact or approximate line search. The optimality conditions are enforced at each step while optimizing along the direction of the gradient of the Lagrangian of the problem. Among many applications, this paper proposes learning algorithms which extract adaptively reduced rank canonical variates and correlations, reduced rank Wiener filter, and principal and minor components within similar framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.