Abstract
Many engineering optimization problems can be state as function optimization with constrained, intelligence optimization algorithm can solve these problems well. Particle Swarm Optimization (PSO) algorithm was developed under the inspiration of behavior laws of bird flocks, fish schools and human communities. In this paper, aim at the disadvantages of standard Particle Swarm Optimization algorithm like being trapped easily into a local optimum, we improve the standard PSO and propose a new algorithm to solve the overcomes of the standard PSO. The new algorithm keeps not only the fast convergence speed characteristic of PSO, but effectively improves the capability of global searching as well. Experiment results reveal that the proposed algorithm can find better solution when compared to other heuristic methods and is a powerful optimization algorithm for constrained engineering optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Algorithms & Computational Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.