Abstract

The thermomechanical behavior of metallic thin films on stiff substrates is relevant for thin-film devices, but its mechanisms are not fully understood. In this investigation, the mechanical properties of pure Cu and Cu–1 at.% Al films on diffusion-barrier coated Si substrates were studied with the wafer-curvature technique. In ultra-pure films, which were sputtered and annealed under ultra-high vacuum conditions, characteristic stress relaxation at high temperatures was measured, which could be clearly attributed to diffusional creep. Good quantitative agreement with a recent model of diffusional creep constrained by a substrate was obtained. These features were absent in the Cu–Al alloy films, in which Al surface segregation and oxidation had produced a “self-passivating” effect, and in films produced in less clean environments. Based on these results, we propose a model of thin-film deformation based on dislocation glide and constrained diffusional creep.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.