Abstract

Identifying the authenticity and processing history of an image is an important task in multimedia forensics. By analyzing traces left by different image manipulations, researchers have been able to develop several algorithms capable of detecting targeted editing operations. While this approach has led to the development of several successful forensic algorithms, an important problem remains: creating forensic detectors for different image manipulations is a difficult and time consuming process. Furthermore, forensic analysts need general purpose forensic algorithms capable of detecting multiple different image manipulations. In this paper, we address both of these problems by proposing a new general purpose forensic approach using convolutional neural networks (CNNs). While CNNs are capable of learning classification features directly from data, in their existing form they tend to learn features representative of an image’s content. To overcome this issue, we have developed a new type of CNN layer, called a constrained convolutional layer, that is able to jointly suppress an image’s content and adaptively learn manipulation detection features. Through a series of experiments, we show that our proposed constrained CNN is able to learn manipulation detection features directly from data. Our experimental results demonstrate that our CNN can detect multiple different editing operations with up to 99.97% accuracy and outperform the existing state-of-the-art general purpose manipulation detector. Furthermore, our constrained CNN can still accurately detect image manipulations in realistic scenarios where there is a source camera model mismatch between the training and testing data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call