Abstract

AbstractIn this paper, the constrained control of systems evolving on matrix Lie groups with uncertainties is considered. The proposed methodology is composed of a nominal Model Predictive Control (MPC), and a feedback controller. The previous work on the control of systems on manifolds is applied to design the nominal MPC, which generates the nominal trajectory. In the nominal MPC, the state and input constraints on the Lie group are transformed into the constraints on the Euclidean space. While to deal with uncertainties, the feedback control used to track the nominal trajectory is designed directly on the Lie group. The tracking error in the feedback control is proved to be bounded in invariant sets. Such invariant sets are further used to revise the constraints in nominal MPC. We prove that by using this methodology, the stability and safety of the system can be guaranteed simultaneously. The proposed methodology is applied to the constrained attitude control of rigid bodies. In the application example, the detailed mathematical proof and the numerical simulation are presented, illustrating the feasibility of the proposed methodology.KeywordsMatrix lie groupModel predictive controlRobust controlAttitude control

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.