Abstract
This paper introduces an image decomposition and simplification method based on the constrained connectivity paradigm. According to this paradigm, two pixels are said to be connected if they comply to a series of constraints defined in terms of simple measures such as the maximum grey level differences over well-defined pixel paths and regions. The resulting connectivity relation generates a unique partition of the image definition domain. The simplification of the image is then achieved by setting each segment of the partition to the mean value of the pixels falling within this segment. Fine to coarse partition hierarchies (and therefore images of increasing degree of simplification) are produced by varying the threshold value associated with each connectivity constraint. The paper also includes a generalisation to multichannel images, applications, a review of related image segmentation techniques, and pseudo-code for an implementation based on queue and stack data structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.