Abstract

Centroidal Voronoi tessellations are useful for subdividing a region in Euclidean space into Voronoi regions whose generators are also the centers of mass, with respect to a prescribed density function, of the regions. Their extensions to general spaces and sets are also available; for example, tessellations of surfaces in a Euclidean space may be considered. In this paper, a precise definition of such constrained centroidal Voronoi tessellations (CCVTs) is given and a number of their properties are derived, including their characterization as minimizers of an "energy." Deterministic and probabilistic algorithms for the construction of CCVTs are presented and some analytical results for one of the algorithms are given. Computational examples are provided which serve to illustrate the high quality of CCVT point sets. Finally, CCVT point sets are applied to polynomial interpolation and numerical integration on the sphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.