Abstract

In this paper, the authors propose a refined Branch-and-Bound algorithm for affine-transformation based image registration. Given two feature point-sets in two images respectively, the authors first extract a sequence of high-probability matched point-pairs by considering well-defined features. Each resultant point-pair can be regarded as a constraint in the search space of Branch-and-Bound algorithm guiding the search process. The authors carry out Branch-and-Bound search with the constraint of a pair-point selected by using Monte Carlo sampling according to the match measures of point-pairs. If such one cannot lead to correct result, additional candidate is chosen to start another search. High-probability matched point-pairs usually results in fewer loops and the search process is accelerated greatly. Experimental results verify the high efficiency and robustness of the author’s approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.