Abstract

Bayesian and empirical Bayesian methods have become quite popular in the theory and practice of statistics. However, the objective is to often produce an ensemble of parameter estimates as well as to produce the histogram of the estimates. For example, in insurance pricing, the accurate point estimates of risk for each group is necessary and also proper dispersion estimation should be considered. Well-known Bayes estimates (which is the posterior means under quadratic loss) are underdispersed as an estimate of the histogram of parameters. The adjustment of Bayes estimates to correct this problem is known as constrained Bayes estimators, which are matching the first two empirical moments. In this paper, we propose a way to apply the constrained Bayes estimators in insurance pricing, which is required to estimate accurately both location and dispersion. Also, the benefit of the constrained Bayes estimates will be discussed by analyzing real insurance accident data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.